MATH 3060 Tutorial 10

Chan Ki Fung

December 1, 2021

In the tutorial, we discussed the following:

Theorem 0.1. Let $f : \mathbb{R} \to \mathbb{R}$ be a C^{∞} function such that for each $x \in \mathbb{R}$, there exists some $n \in \mathbb{N}$ with $f^{(n)}(x) = 0$. Then f is a polynomial.

The proof basically follows the outline [here.](https://mathoverflow.net/a/34067) You can also check [this post](https://math.stackexchange.com/q/165696) for more interesting applications of Baire category theorem.

Throughout the proof, we will freely use the following two facts:

- (i) If $a < b < c < d$, and g is a polynomial on both (a, c) and (b, d) , then f is a polynomial on (a, d) .
- (ii) If g is differentiable and $g = 0$ on a subset E of R, then $g' = 0$ on E' (The set of limit points of E).

For the first item, say $f = p_1$ on (a, c) and $f = p_2$ on (b, d) be the two polynomials, then $p_1 = p_2$ on (b, c) and so p_1 and p_2 are the same polynomials. (Two different polynomials can only agree on a finite set)

For the second item, let $x' \in E'$, then we can choose $x_n \in E$ and $x_n \to x$. then $g'(x) = \lim_{n} \frac{f(x_n) - f(x)}{x_n - x} = \lim_{n} \frac{0 - 0}{x_n - x} = 0.$

Proof. We follows the steps in the questions, we introduce the notations:and showing the following steps:

 $X = \{x \in \mathbb{R} : f \text{ is not a polynomial in any open neighbourhood of } x\},\$

$$
S_n = \{ x \in \mathbb{R} : f^{(n)}(x) = 0 \},
$$

and show the following

Step 1: Show that X is closed without isolated points.

Step 2: Show that S_n is closed.

Step 3: Suppose $X \neq \emptyset$. Show that there exists a positive integer n and a nonempty open interval (a, b) such that

$$
\emptyset \neq (a, b) \cap X \subset S_n.
$$

Step 4: Show that f is a polynomial.

We first show that how step 1-3 can implies step 4.

Suppose f is not a polynomial, then X is nonempty by item (i). By Step 3, we can find a nonempty open interval (a, b) such that

$$
\emptyset \neq (a, b) \cap X \subset S_n.
$$

We claim that $f^{(n)} = 0$ on (a, b) . This will imply f is a polynomial of degree $\langle n \text{ on } (a, b), \text{ contradicting to the assumption } (a, b) \cap X \neq \emptyset.$

To show the claim, let $x \in (a, b)$. If $x \in X$, then $x \in S_n$ and so we are done.

Now suppose $x \notin X$. By Step 1, we know that $(a, b) \setminus X$ is open, so we can find a maximal open interval $(a', b') \subset (a, b) \setminus X$ so that $x \in (a', b')$. (The existence of maximal interval follows from question 1 tutorial 10.) We note that either $a' \in X$ or $b' \in X$, because otherwise we must have $a' = a$ and $b' = b$ contradicting to $(a, b) \cap X \neq \emptyset$. Let's assume $a' \in X$

Since $(a', b') \subset X^c$, we know f equals some polynomial of some degree d on (a', b') by item (i). In particular, we have $f^(d)$ is a nonzero constant on (a', b') . By continuity, we must also have

$$
f^{(d)}(a') \neq 0.
$$

We finally make use of item (ii): $f^{(n)} = 0$ on $(a, b) \cap X$, but we know X has no isolate points (i.e. $X' = X$). So item (ii) says $f^{(m)} = 0$ for all $m \geq m$. This gives $d < n$ and hence $f^{(n)}(x) = 0$.

To finish the proof, we must show step 1-3.

Step 1: We first show X^c is open. Let $x \in X^c$, then f is a polynomial in a neighbourhood $(x - \epsilon, x + \epsilon)$, and so $(x - \epsilon, x + \epsilon) \subset X^c$. We next show that X has no isolated points. In fact, if $x \in X$ is an isolated points, then we can find a neighbourhood $(x-\epsilon, x+\epsilon)$ so that $(x-\epsilon, x+\epsilon) \cap X = \{x\}.$ But then f is a polynomial on $(x - \epsilon, x)$ and on $(x, x + \epsilon)$, so we can find positive integers n_1, n_2, n_3 so that $f^{(n_1)} = 0$ on $(x - \epsilon, x)$, $f^{(n_3)} = 0$ on $(x, x + \epsilon)$ and $f^{(n_2)}(x) = 0$. So if we take $n = \max\{n_1, n_2, n_3\}$, we have $f^{(n)} = 0$ on $(x - \epsilon, x + \epsilon)$ which contradicts to $x \in X$.

Step 2: Since $f^{(n)}$ is continuous and $\{0\}$ is closed, so $S_n = (f^{(n)})^{-1}(\{0\})$ is closed.

Step 3: Step 1 tells us that X is closed subset of the complete metric space \mathbb{R} , so X is a complete metric space. On the other hand,

$$
X = \bigcup_{n=1}^{\infty} (X \cap S_n),
$$

so by Baire category theorem, some $X \cap S_n$ has nonempty interior. In other words, it contains some open subsets of X , i.e.

$$
\emptyset \neq (a, b) \cap X \subset X \cap S_n \subset S_n.
$$

for some $a, b \in \mathbb{R}$.

 \Box